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With a transverse array of channels of equal widths but differing resistances, we 
have generated an improved approximation to  spatially homogeneous turbulent 
shear flow. The scales continue to grow with downstream distance, even in a 
region where the mean velocity gradient and one-point turbulence moments 
(component energies and shear stress) have attained essentially constant values. 
This implies asymptotic non-stationarity in the basic Eulerian frame convected 
with the mean flow, behaviour which seems to be inherent to homogeneous 
turbulent shear flow. 

Two-point velocity correlations with space separation and with space- 
time separation yield characteristic departures from isotropy, including clear 
‘upstream-downstream ’ unsymmetries which cannot be classified simply as 
axis tilting of ellipse-like iso-correlation contours. 

The high wave-number structure is roughly locally isotropic although the 
turbulence Reynolds number based on Taylor ‘microscale ’ and r.m.s. turbulent 
velocity is only 130. Departures from isotropy in the turbulent velocity gradient 
moments are measurable. 

The approximation to homogeneity permits direct estimation of all components 
of the turbulent pressure/velocity-gradient tensor, which accounts for inter- 
component energy transfer and helps to  regulate the turbulent shear stress. It is 
found that its principal axes are aligned with those of the Reynolds stress tensor. 
Finally, the Rotta (1951, 1962) linear hypothesis for intercomponent energy 
transfer rate is roughly confimed. 
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1. Introduction 
The central role of shear in most natural and technological turbulent flows 

arises in coupling the mean velocity field with the turbulent velocity field. The 
spatial variation of the turbulent shear stress determines the mean velocity 
distribution, as seen in the mean momentum equations, and the turbulent motion 
itself is maintained and moulded by the interaction of the mean velocity non- 
uniformities with the Reynolds stresses, vorticity fluctuations, etc. 

These interactions can be identified as various terms in the averaged equations 
for momentum, mean flow kinetic energy, turbulence kinetic energy, turbulent 
shear stress (Reynolds 1895, Chon 1945 etc.). This identification might kie de- 
scribed as the outcome of the ‘Reynolds theory ’ of turbulence, i.e. the notion that 
random hydrodynamic motion can be decomposed into mean and fluctuating 
parts. 

The early attempts to make the turbulent shear flow problem analytically 
determinate with a minimum input of empirical information centred upon the 
mean momentum equation. Various physically motivated relations were tried 
as expressions of local turbulent shear stress in terms of local mean velocity 
gradient and higher derivatives. From the early ad hoc turbulent (‘ eddy ’) 
viscosity ideas of de Saint-Venant (1843) and Boussinesq (1877), through the 
mixing-length theories of Taylor (1925, for heat transfer), Prandtl (1925, 1942), 
von KBrm&n (1930, 1937), Nevzgljadov (1945) and others [see Hinze (195.9) for 
a partial account], the phenomenological theories have become increasingly 
sophisticated. 

Among the many theories since 1945, the strain-rate approach of Townsend 
(1956) and the ‘wave-like’ approaches of Landahl(l967) and Phillips (1967), for 
example, show notable physical motivation. 
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Central shortcomings of the earlier eddy viscosity and mixing-length theories 
are that they assume (a )  simple gradient transport (alocalconcept) with (b )  aneddy 
viscosity which is locally controlled. Batchelor (1950) and Corrsin (1957) pointed 
out that any theoretical model which uses a simple gradient transport concept 
for turbulent transport must be wrong in principle because it implies a trans- 
porting mechanism which is much smaller than the distance over which the mean 
values change appreciably. This criticism applies to both eddy viscosity theories 
and the oldest types of mixing-length theories. Surprisingly, these kinds of 
theories, judiciously applied, can be made to give fairly good predictions of mean 
velocity, especially in ‘free’ shear flows, but even in wall flows. 

Some recent analytical work has started to generalize the earlier theories by 
introducing a non-local eddy viscosity (see, for example, Nee & Kovasznay 1969) 
and/or a transport rate expression with memory (Lumley 1967). The traditional 
turbulent shear flows (boundary layer, tube, jet, wake) have their turbulent 
shear stress carried by eddies which are large enough to cover distances over which 
the mean velocity gradient changes appreciably. I n  fact, these shear-carrying 
eddies are comparable in size to the lateral distance between flow boundaries, 
so they may be affected by the boundary conditions (Corrsin 1957). This sug- 
gested the scientific importance of devising a shear flow in which the relation 
between shear stress and mean velocity gradient (strain rate) field could be 
studied without the complicating effects of boundary conditions. The rational 
method of starting with the simplest case suggests a flow without mean profile 
curvature. This leads to the simplest conceivable shear flow, homogeneous 
turbulence maintained by a uniform mean shear. 

Although homogeneity requires an infinite spatial field, it can be approximated 
in practice if the integral scales of the turbulence field are much smaller than the 
distances over which the mean strain-rate is essentially constant. I n  proposing 
the experiment, Corrsin (1963, p. 524) discussed some of the difficulties, including 
the possibility that such a homogeneous turbulent shear flow might not remain 
in equilibrium. Since the momentum-carrying eddies in the traditional shear 
flows are not small relative to the gross shear zone width, a grid-generated homo- 
geneous shear flow might simply develop larger and larger eddies. Such a mean 
velocity field contains no inherent characteristic length, such as the ratio of 
first to second derivative. I n  fact, when Rose (1966) attempted to generate a 
homogeneous turbulent shear flow (using a plane parallel-rod grid of uniform rod 
diameter and non-uniform spacing) he found the turbulence scales growing mono- 
tonically downstream. His flow field attained other properties of a homogeneous 
shear flow: a uniform mean velocity gradient, uniform turbulence intensities, and 
a (roughly) uniform turbulent shear stress. However, there also remained down- 
stream a spatial variation of the scales in planes perpendicular to the mean flow, 
a vestige of the non-uniformity of the shear-generating grid. 

The problem of exactly homogeneous turbulent shear flow has been examined 
analytically by several investigators. Reis (1952), Burgers & Mitchner (1953) and 
Craya (1958) deduced the symmetry properties of the various velocity correla- 
tions and derived equations governing the two-point, single time correlation and 
the corresponding spectral equations. 

6-2 
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Townsend’s (1956) strain-rate theory of Reynolds stress is based largely on 
the idea that a parcel of turbulent fluid whose scale is small compared with the 
shear zone width is subjected to a local uniform mean strain rate. He conjectured 
that (a )  a state of structural equilibrium of the turbulence would be attained 
under the action of an irrotational, constant mean strain rate, and that (b)  
this state is approximately the same as that produced by a uniform plane 
(rotational) shearing motionwith equal strainrate. Moffat (1967, p. 139) suggested 
that this neglect of the rigid body rotation may be unjustifiable if the process 
of vortex line stretching is less efficient when the rigid body rotation is present. 
Pearson (1959) performed a ‘weak turbulence ’ (effectively, small Reynolds 
number) analysis in which the self-interaction of the turbulent field was neglected. 
He computed the linearized response (i.e. with triple correlation discard) of an 
initially isotropic turbulence subjected to a sudden uniform gross shear. Deissler 
(1961) and Fox (1964) pursued the same problem in greater detail. The results 
show that in this truncated model, whose self-consistency remains to be in- 
vestigated, the turbulence energy eventually decreases to zero. The turbulence 
is not sustained. Nevertheless, it shows qualitative features strikingly like those 
observed in real shear flows. Hasen (1967) has computed the behaviour of a, two- 
dimensional disturbance in the linear approximation and in a non-linear one. 

The purpose of the present experimental study was to generate a closer approxi- 
mation to homogeneous turbulent shear flow than that obtained by Rose, and 
then to investigate the structure of the resulting flow field. The turbulent struc- 
ture was not expected to reach an exact equilibrium or stationary state, but the 
hope was that the length scales growth rate with increasing distance from the 
grid would be relatively slow. Then, this ‘ asymptotic state ’, where the turbulence 
intensities and shear stress were maintained a t  nearly uniform values, would be a 
region of the flow field which was nearly homogeneous. The resulting negligibility 
of some terms in the component energy equations then allows indirect estimation 
of the pressure-velocity correlation terms, which have not yet been measured 
away from solid boundaries with unequivocal precision. This gives new informa- 
tion on intercomponent energy transfer and on the destruction of turbulent 
shear stress. 

Finally, it should be noted that many turbulent shear stress theories either 
assume (e.g. von K&rm&n 1930, Taylor 1932) or conclude (e.g. Phillips 1967) that 
the mean strain-rate gradient is an essential determinant of the turbulent shear 
stress. Since we make that quantity negligible in this kind of experiment, those 
theories are not directly tested. In  fact, the experiment is designed primarily to 
get information, not to test prior theories. 

2. Analytical preliminaries 
2.1. Moment equations for homogeneous turbulent shear $ow 

As a prelude to the experimental report, it is helpful to inspect the simplest 
moment equations for the postulated case of homogeneous turbulent shear flow. 
Theoreticalinvestigators who worked with the fullequations (Reis 1952, Burgers & 
Mitchner 1953, Craya 1958) appear to have assumed that a stationary asymptotic 
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state is possible. It seems to us that this is actually one of the questions to 
be investigated because (like isotropic turbulence) this system has no intrinsic 
length or velocity scales. If it had one, it would of course have the other, the 
connexion being given by the mean velocity gradient. 

To begin we assume rectilinear mean flow Dl(x2,t) parallel to the x1 axis. 
0, = = 0. aU1/axz is independent of x. With the restriction to homogeneity, 
all one-point averages except gl can depend at most on time t. The mean momen- 
tum equation reduces to a Q a t  = 0. 

The equation for the mean velocity gradient (in this case the same as mean 
vorticity and mean strain rate) is, more or less trivially, 

a(%) = 0. 
at ax, 

This a/at could be written as an ordinary total derivative, but maintaining the 
partial derivative symbols in this part of the text serves to remind us that these 
equations are deduced from more complicated ones. 

The time rate of change of the kinetic energy of the meanJEow, 
_ _  

E z +uiui = +g!, 
can first be simplified to 

- 

- = u u ---(U1u1u2)+v--v - , 
a2E ax; (3 a~ -au1 a -- 

at ,ax, ax, 

The first term on the right side is the negative of the familiar turbulent energy 
production rate term, the second is change rate due to net turbulent convection 
of E down the E gradient,? the third is change rate due to viscous transport of E 
down the E gradient, and the last is the rate of viscous dissipation of E directly 
t o  internal energy of the fluid. We note that the first two just balance each other 
and the last two just balance each other, so 

a q a t  = 0. (2.4) 

Physically, the local loss of mean flow kinetic energy to turbulent and internal 
energies is precisely made up by the non-uniformities of the two kinds of flux 
rate. The flux rates are non-uniform because the E gradient is not constant. We 
note in passing that the function E(x2)  changes under a Galilean transformation 
along xl. 

-~ t Although the identification of the general term - a(Uk uiu,)/asi as turbulent con- 
vective transport of the mean flow kinetic energy is ‘obvious’ by a process of elimination 
(it is the only physical phenomenon left after all the others have been correctly written), 
we can supplement the expository literature by a brief analytical demonstration : Suppose 
we have a random fluid property A(x, t )  and form a moment equation for its mean field 
A. The mean turbulent convection rate of d is and the local rate of increase of d 
due to inhomogeneity in this vector flux is -a (a) /as , .  Mean flow kinetic energy, 
E &n,o. is formed by averaging the random fluid property A F &(UiUj-u iu i ) ,  

3’- 

where U U+u. Therefore the average convective flux vector is 
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The balance equation for the meun turbulent kinetic energy B = +ui i .  has the 
simple form 

The first term on the right (ordinarily found to be 2 0 )  is the rate of production 
from the mean flow kinetic energy, the second is the viscous dissipation rate. 
No further simplification can be made. 

The three Cartesian component turbulent energy equations have the eorre- 

The energy is all fed into i?(a = &:, then parcelled out to the other components 
via the pressure-velocity covariance terms. Thus we expect that this term will 
be < 0 for e(,) and > 0 for E(,) and eC3). 

The Reynolds shear stress balance (apparently first employed by Chou 1945) 

The first term on the right is production rate. At first glance we cannot say whether 
the pressure-velocity covariance helps or hinders the growth of shear stress, and 
the sign of the viscous term is not obvious a priori either. If we note, however, 
that (8ul/axk) (au,/ax,) is zero in isotropic turbulence, we are lcd to speculate 
that in very high Reynolds number turbulence, whcre local isotropy permits 
estimating one-point derivative moments by their isotropic forms, the viscous 
term may be negligible. Then the net effect of the pressure-velocity covariance 
terms is probably to destroy shear stress, because the other remaining term 
certainly creates it (Rotta 1962). There is no exact basis on which to drop terms 
from (2 .7) .  

We can write an array of second moment equations for the vorticity fluotua- 
tions, but we save space by showing only the mean square turbulent vorticity 
balance (7 = W,), which simplifies to 

_ _ _ ~  

The first term on the right side is production by mean strain-rate stretching of 
turbulent vortex lines, the second (noting that the - aol/ax, in this term was the 
mean vorticity component a,) is production by local strain-rate fluctuations 
acting upon the mean vorticity, the third is self-amplification by turbulent 
stretching of turbulent vorticity (Taylor 1938). The last term is viscous destruc- 
tion rate. Of all the missing terms, the one which may be most important in 
general shear flows is the rate of production of from Qj Qj: - Wiuk ( a G i / h k ) .  

_ _  
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The foregoing moment equations tell US that, if we could set up an exactly 
homogeneous turbulent shear flow a t  an instant of time, the mean velocity 
gradient would remain constant. They do not tell us whether the homogeneous 
turbulence structure would be independent of time. 

2.2. Estimates with local isotropy 

I n  order to be able to make rough estimates of the time evolution of homogeneous 
shear flow, we assume a Reynolds number so large that local isotropy allows all 
derivative moments to be approximated by their isotropic turbulence values. 
With the turbulent dissipation rate represented by 8,  equations (2.5) to (2.8) 

- 
dZ -dU, 
- - -u  u ---E 

are approximately 
- (exact), 

dt 2 d X 2  

(2.11) 

(2.12) 

Since the vorticity is a velocity derivative, we insert the isotropic forms for the 
terms on the right side of (2.12) : 

(2.13) 

where f and k are the isotropic scalar double and triple correlation coefficient 
functions with velocity components along the line joining the two sampling points 
[e.g. Batchelor 1953, equation (5.5.8)]. 

Experiments have shown (Taylor 1938) that in nearly isotropic turbulence the 
(negative) viscous term dominates the right side of (2.12). If the same relative 
magnitudes occur in locally isotropic homogeneous shear flow, then dyldt < 0, 
so the large Reynolds number case will not be stationary. The restriction to 
homogeneity and the assumption of local isotropy have combined to eliminate 
all contributions of the mean flow field t o  turbulent vorticity production, so the 
turbulent vorticity apparently would decay. 

With local isotropy, 7 = -,= 5 a / h 2 .  Since (2.9) includes energy pro- 
duotion, ?? would not decay as rapidly as in isotropic turbulence. Therefore, if 
dyldt were roughly the same for the two cases, the Taylor microscale h would 
grow more rapidly in the shear flow. 

The foregoing discussion suggests that a homogeneous turbulent shear flow 
might not remain stationary in time. For our wind tunnel experiment this 
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suggests non-stationarity in a convected Eulerian frame moving at the centre- 
line speed U,. That implies in turn that the turbulence field must show some 
downstream inhomogeneity. The empirical amounts of spatial inhomogeneity , 
and of temporal non-stationarity in the convected frame, are discussed in 5 5.1. 

3. Experimental apparatus 
3.1. The wind tunnel and the shear-turbulence generator 

The wind tunnel is the one used by Rose (1966). In  order to avoid the lateral 
gradients in turbulence scale which persisted behind his grid of non-uniform rod 
spacing, we devised a shear-turbulence generator with periodic geometry across 

FIGURE 1. Schematic skotch of the ‘homogeneous ’ tiirbiilcrit shear 
flow generator and the downstroam mean flow. 

Mean component r.1n.s. fluctuating- 
Co-ordinate velocity component velocity 

Xl iJl = U(x,) u; 
u? 

2 2  u2 = 0 

z3 u3 = 0 u3 

the outlet plane. The original plan was to use a row of individually powered slot 
jets, but overall system design simplicity and economy finally dictated the com- 
promise of a ‘grid ’ consisting of a row of parallel, equal-width channels having 
adjustable internal resistances (screens), figure 1. Operationally this is less con- 
venient because, with a common air supply, adjustment of one channel affects 
the others. 

There are 12 channels, 24in. long, with aluminium walls $in. thick, spaced lin. 
on centres. These fall a bit short of having fully developed channel flow at the 
exit plane, but a gin. square rod was installed on the long centreline of each 
channel exit plane in order to reduce the scale and characteristic time of the 
‘initial’ turbulence. As will be seen in $4, this allowed the turbulence to reach its 
nearly homogeneous asymptotic condition by about z l /h  = 8.5, i.e. 8.5ft. from 
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the exit plane of the generator. This left about 2 ft. of nearly homogeneous tur- 
bulent shear flow for experimentation. 

The mean velocity gradient is set by trial-and-error changing of the number 
and solidities of the screens spanning each channel. Mean velocity was measured 
with pitot tubes and constant-temperature hot-wire anemometers. The mean 
gradient for all measurements in this paper was 12.9 sec-I, with a tunnel centre- 
line mean speed U, = 40-7ft./sec. The walls were adjusted to give a mean static 
pressure constant within experimental accuracy. 

It was hoped that the 'grid '-generated turbulence, which is inevitably non- 
uniform across the tunnel, woulddiffuse towarduniformity as it decayed, and that 
the turbulence field would eventually approach a good approximation to down- 
stream constancy, as shear-produced turbulent energy and viscous dissipation 
came into balance. This hope was fairly well realized ($4). 

3.2. Instrumentation 

Velocity fluctuations were measured with Disa type 55D 01 t constant-tempera- 
ture anemometers in conjunction with Disa type 55D l0f: linearizers. The linear- 
izer output voltages were calibrated to known flow conditions in the wind tunnel 
test section with the shear-turbulence generator removed. The maximum u; 
turbulence level of the tunnel under these conditions was 0.15 %. An overheat 
ratio of 0.7 to 0.8 and a linearizer exponent setting of 2.22 (power) were found 
to yield linear calibration curves. Root mean squares of the fluctuating voltages 
were measured with the Disa type 55D 359 r.m.s. voltmeter, whose response is 
flat within 

Cross-component fluctuations, ui, u;, weremeasured with a standard symmetric 
X-array or with an asymmetric combination of normal and inclined wire. uz or 
us sensitivity was obtained by yawing the probe !C 5" (in a plane parallel to the 
two wires) in the test section of the empty tunneI. 

Air temperature was monitored with a thermistor-bridge system and, with 
the aid of several heaters and a refrigerator (' air conditioner '), ambient temper- 
ature was kept sufficiently constant for no corrections to be required. Constancy 
of ambient temperature was important for mean velocity measurement, because 
the velocity gradient was fairly small; a ;in. translation in xz corresponds to 
only 1 yo change in mean velocity. 

Two-probe spatial velocity correlations were measured by direct multiplica- 
tion of the two hot-wire signals followed by electronic integration in time. The 
multipliers used were either the G.P.S. model MU-500E-M or the G.P.S. model 
MU-405. Both have frequency responses flat ( _+ 1 yo) from d.c. to 50 kHz and 
accuracies of approximately 5 0.50 % of full scale amplitude. Time averages 
were taken with the S.O.S. model SI-100 integrator and Kramer timer. The data 
were corrected for a repeatable drift component of the integrator as determined 
with d.c. calibration. Nominal integration time was 90 sec. 

1 yo of full scale from 1 Hz to 100 kHz. 

f Instruction Manual 55D 01, second edition, Disa Elcktronik A/S, Herlev, Denmark. 
$ Instruction Manual 55D 10, Disa Elektronik A/S, Herlev, Denmark. 
$ Instruction Manual 55D 35, Disa Elektronik A/S, Herlev, Denmark. 
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The traversing mechanism used was essentially the sa,me as the one described 
by Tiellogg (1965). Hot-wire probes were made of jeweller’s broaches encased in 
Nu-Weld dental cement, with $in. stainless-steel tube as main shafts. The up- 
stream probe was bent up at  an angle (see figure 45) to  minimize downstream 
interference and to allow ‘ meshing ’ of the two probes to aid in determining zero 
separation. The x1 and x2 separation distances were read on dial gauges graduated 
in thousandths of an inch. Wires used for correlations were 0-00015in. tungsten 
with copper-plated end supports. The sensing portions were 0.04 in. long. 

Space-time correlations were determined in a similar manner, with time delay 
introduced by playing back the signals as recorded on a dual track (variable loop 
length) Sangamo model 482 RB tape recorder. Toward the end of the investiga- 
tion a P.A.R. model 101 correlator became available and was used for some 
measurements. Some of the smallest delay times were obtained with an Ad-Yu 
model 801-Dl analogue delay line. A block diagram is shown in figure 2 .  

p~ Phibrick az&”a, 
unit op. amp. - 

‘lower 17 1 Hz-20kHz Philbrick I4/4F 

FIGURE 2.  Block diagram of the space-time correlation circuits. 

Channel 2 

All of the time delay systems were checked with sine wave inputs. Unity 
minus the auto-correlation coefficient function, 1 - R(r) in this test (figure 3), 
shows a slight departure from the required parabolic shape (slope = 2.0 on the 
log-log plot) as r -+ 0. This departure must be due to slight inaccuracy ( 2 1-2 yo) 
in the correlation circuit. 

This graphical technique was used to measure the spatial ‘micro-scales’ in 
the turbulence (ss4.2 and 4.3). As a cross-check on this method, A, was also 
measured by differentiating the u1 signal and assuming the validity of the 
‘Taylor approximation ’ (54.2).  

The frequency response of the differentiation circuit, a Disa model 65 A06 R-C 
with nominal time constant of 0.2msec, is shown in figure 4. Differentiation 
tends to reduce the signal-to-noise ratio, and it was necessary t o  correct dif- 
ferentiated data for noise. 

Spectral measurements were made with a Dytronics model 720 (constant per- 
cent bandwidth) adjustable filter with ‘ high selectivity’ setting in the lo-wer- 

& 
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frequency range and a Hewlett Packard model 302A (fixed 6 Hz bandwidth) for 
high frequencies. The filter band shape calibrations are shown by Comte-Bellot & 
Corrsin (manuscript submitted). Data taken with the two instruments were over- 
lapped at about 100 Hz as a check. In  order to minimize the need for noise correc- 
tions, 

- 
t- 

I 
3 

wires used for spectra were either 0-00009in. diameter tungsten or 

r (msec) 

FIGURE 3. Performance checks of the two systems used for measuring correlation with 
time delay. Test signal is a sine wave of 20 Hz. -, theoretical R(T) = cos 27rfr,f = 20 H z ;  
0, measured R(r) W/tape recorder and G.P.S. multiplier; 0, measured R(T) W/P.A.R. 

0.00005 in. diameter platinum/IO % rhodium. Lengths were on the order of the 
Kolmogorov microscale, 0.014 in., and frequency responses above 12 kHz. The 
spectral data were not corrected for filter shape or for finite sensing-element 
length. 

The turbulent shear stress spectrum (cross-spectrum of u1 and uz) was 
measured by two procedures which are not entirely independent. The first in- 
volves measuring the signal spectra of both wires in a symmetric X-array. Then, 
from the wire calibration constants and the measured u1 and up spectra one 
obtains the desired spectrum, essentially by subtracting. The other method con- 
sists in multiplying the narrow-band-pass-filtered outputs of a normal wire and 
an inclined wire from which the u1 contribution has been electronically sub- 
tracted, and averaging this product. 
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The hot-wire anemometer unit is d.c. coupled. The magnetic tape system, 
using frequency modulation, is also faithful down to d.c. The effective high- 
frequency limitation of the tape, presumably due to mechanical fluctuation, is 

Disa Kronhite Disa 
auxiliary unit filter 55A06 

Disa 

St 
S5D01 

hot wire Linearher - 55D10 - (L.P.F.C.O.) - 0.2 ~ ~ - 1 0  - differentiator 
r=O.2 m a c  10 kH2 kHz 

Frequency (Hz) 

D.i+ 
auxrliary 

unit 
2 Hz-50 kHr 

- 

Disa r.m.s. 
55D35 

C.M.C. 
(b) 

4.1. Flow development 4. Measurements 

The flow field just downstream of the generator is of course non-uniform. We 
are interested in attaining an ‘asymptotic’ state which is as nearly homogeneous 
as possible. The approach toward homogeneity a t  least in planes normal to the 

counter 
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mean flow turns out to be more rapid for the mean velocity than for the tur- 
bulence. This behaviour was observed by Rose, and is consistent with that of 
familiar turbulent shear flows (such as jets). 

5.0 

f (H4 

FIGURE 5. Frequency response of correlation circuit and the effective response of the 
Sangamo tape recorder used in f.m. mode. 0, 8oout/Zin, frequency response of space-time 
correlation circuit W/cables to tape recorder; 0, R(7),  effective correlation response of 
tape recorder (sine wave input, r = 0). 

FIGURE 6. Mean velocity profiles at three distances downstream of the generator. h is the 
height of wind tunnel test section, 12 in. Departures of data points from the reference 
straight lines were reproducible. Most data were taken in the region 8.5 < x,/h < 10.5. 
a, s,/h = 3.33, strain rate = 12.94 sec-I; 0, sl/h = 6.67, strain rate = 12.96 see-I; A, 
x,/h = 9.50, strain rate = 12.92 see-,. 

Lateral distributions of mean velocity u/U, obtained with pitot tube and 
micromanometer at three downstream locations are shown in figure 6. The 
ordinate origins are displaoed for clarity. The centreline velocity U, was nearly 
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constant down the tunnel, providing a check on the wall compensation for 
boundary-layer growth. The 12-9 sec-1 mean strain rate, about the same as Rose's 
(1966) 13.7 sec-1, does not change significantly downstream. At xl /h  = 9.50, 
where h is the tunnel height, the boundary layers have penetrated to about 
0.15 inward on the bottom and top walls. 

-1 

A A  - 

0.00 I I I I I I I I I - 

3 

A A  
A A A A  A A A  A A A  

A A  A 

0.030 d 1 0 . 6 0  

1.5 x 10-4 

1 . 0 ~ 1 0 - 4  

N o  

R 

I 
.0.5 x 10-4 

X l l h  
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The development of the turbulence field is shown in figures 7-10. Figure 7 
shows the centreline distribution of turbulence intensities, shear stress and shear 
correlation coefficient. The turbulence intensities decay from generator-produced 
values to nearly constant values which are presumably characteristic of the mean 
shear sustaining the turbulence and of the (slowly growing) scales, and hence of 
the generator as well. The u; component reaches a level value before uk, u; and the 
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shear stress. This behaviour, also observed by Rose, may result from the fact 
that in rectilinear flows the production of turbulent energy occurs entirely in 
the u1 component (e.g. Corrsin 1957), and to the fact that, since u; has more 
energy, it is relatively less ‘sensitive ’ to a given amount of energy exchange. The 
‘asymptotic’ levels of u;, u;l and u; are 1.8, 1.3 and 1.4% respectively of U,. 
The apparently asymptotic value of the shear correlation coefficient is about 
0-50, the same order as is commonly measured in traditional shear flows away 
from solid or free boundaries. 
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1 .os 

2 1.00 

0.95 
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0.85 

- 0  
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x,/h= 10.0 
x,/h = 0.00 
x3/h= t-0.167 
x ~ / I z =  -0.167 

P Q 8 8 8 
A 
Q 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Xzlh 

FIGVRE 11. Profiles of mean and turbulent velocities at thrcc z3 stations across t8he test 
scctiorl--a, test of two-dimensionality. x,/h = 10.0: 0, x3/h = 0.00; A, x3/h = +0.167; 
0, x3/h = - 0.167. 

Mean velocity and u; data were also taken a t  xl/h = 11.0. They agreed with the 
values a t  10.0 and 10.5, but the tunnel exit plane was located a t  xl/h = 12-0, 
and we wanted to avoid possible end effects, so few measurements were made 
beyond xl/h = 10.5. Measurements showed Iu1uQ/u;uiI never exceeding 0.01 
along the centreline. This suggests that, as far as the turbulence was concerned, 
the mean motion was effectively two-dimensional. 

Lateral distributions of the r.m.s. turbulent velocities and the Reynolds stress 
in the (xs = 0) midplanes at different downstream locations are shown in figures 
8-10. These mean velocity data were obtained with a linearized, constant- 
temperature hot-wire anemometer. 

The grid-created non-uniformities in ui and shear stress decrease as x,/h in- 
cresses until, a t  xl/h = 8.5, the turbulent field becomes reasonably uniform. 
Residual variations are not identifiably related to grid dimensions. Figure 10 
presents the data for xl/h = 10.0, including u;. Excluding the boundary layers, 
the mean strain rate and the turbulence intensities are nearly constant across the 
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flow field. The shear stress - =/ U: on an expanded scale appears rather non- 
uniform, but the average is 1.11 x 
about the uncertainty for these measurements. 

The intensities and shear stress increase markedly at  the bottom and top wall 
boundary layers. Some influence of the boundary layers is detectable to values 
of AxJh = 0.30 and 0.20 respectively from the walls. 
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4.2. Two-point spatial correlations and auto-correlations of velocity 

The two-point, velocity correlation functions are the simplest measures of spatio- 
temporal structure and they provide us with an additional test of homogeneity. 

The u1 double correlation coefiicient is defined as 

with u,(x,t) the turbulent velocity component in the mean flow direction at  a 
position x and time t. The overbar denotes a time average, r1,r2 and r3 are 
Cartesian components of the separation vector r, and 7 is time delay, which is 
zero for simple space correlation. 

7 F L M  41 

FIGURE 12. Profiles of mean and turbulent velocities in the z3 direction, normal to both 
mean flow and principal velocity gradient. xI /h  = 10.0, x,/h = 0.50. 0, o / U G ;  A, ui/Uc. 

Lateral distributions of o/Uc and u;/Uc at xl/h = 10.0 at  three values of x3/h 
(figure 11) show fairly good two-dimensionality. Figure 12 is an x3/h profile at  
z2/h = 0.50 and xl/h = 10.0. The slight (undesirable) a8/ax3 is about 1-2sec-1. 
This gives IaD/ax,l/lag/ax,l = 0.09, a departure from the ‘design’ flow which 
appears to be of no dynamic significance in the turbulence because the corre- 
sponding turbulent energy production term, -= i3g/i3x8, is only 1/500 of the 
principal production term, - iQZz aVlax,. 

The small departure from two-dimensionality suggested the possibility of 
secondary flow. A check using a single yawed wire as direction meter detected 
none. 



98 F.  H .  Champagne, V .  G. Harris and 8. Corrsin 

The ‘longitudinal’ Taylor microscale hl is defined by 

(4.1) 

and two ‘lateral ’ microscales h, and A, are defined similarly, with the u, deriva- 
tives taken with respect to x2 and x, respectively. 

Thc ‘longitudinal’ integral scale L,, is defined by the relation 

and lateral integral scales L,, and L,, are defined similarly, with the integration 
of R,,(O, r2,  0; 0) and R,,(O, 0, r,; 0). 

In  the event that a correlation coefficient became negative, however, the 
upper limit of integration in the definition was arbitrarily taken as the position 
of its first zero. This gives a measure of spatial large-structure without intro- 
ducing the complexities associated with the a.c. coupling of some of the circuits. 
As a mutter of principle, as.-coupled circuits can give only zero as the value of an 
integral scale, because the integral scale is proportional to the d.c. intercept of 
the energy spectrum. For discussion of this point, see, for example, Comte- 
Bellot & Corrsin (submitted for publication). 

In  statistically steady homogeneous turbulence (see, for example, Batchelor 

and thus 

so the rl + 0 curvature of R,, is a convenient method 
vanishing time delay we have the analogous expression 

R,,(O, 0,O; 7 )  + 1 - (72/AF) .  

for measuring A,. For 

(4.4) 
_ _ _ _  

where A: = 2u:/(ihl/at)2.  When the ‘Taylor approximation’ holds (see the end 
of this section), A, + h,/e and the measurements can be checked against each 
other. 

Two-point spatial correlation functions were measured at  

q / h  = 8.5 [f2,,(r1, 0 , O ;  0) and R,,(O, r2,  0; O)], 
= 9‘5 [R11(07  ‘23 O;  O)] 

and = 10.5 [R,,(O, r2,  0; O)]. 

Only the 8.6 data (at ‘large r 7 ) ,  figure 13, and the 10.5 data, figure 14, are pre- 
sented. The A’s and L’s from the omitted data are included in figure 17. 

Following Rose (1966), we inspect these functions on both semi-log plot [which 
emphasizes the small correlation (‘large r ’) region] and log-log plot [where 1 -Al, 
emphasizes the ‘small r 7  region]. The latter is useful for h determination by 
fitting the ‘best’ straight line of slope 2.0. For small probe separation, both 
flow interaction effects and small circuit errors can cause appreciable errors in 
the h determination. 
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Probe interaction is particularly severe when the downstream hot-wire is in 
the wake of the upstream one. Tests on this effect in terms of space and space-time 
correlations showed that this configuration had t o  be avoided for rl < 4in. For 
this range of r17 correlations were obtained by extrapolation. 

Extrapolation (or interpolation) to r2 = 0 was made simpler by the empirical 
discovery that R,,(r,, B ~ ,  0; 0) and Ell(rl, r2, 0; 7) were even functions of r2  within 

0 

0 

CI 

0 

U 0 

0.01 I I I I - - 
r1I-h T 2 i L 2  

FIGURE 13. Spatial correlation functions along the flow direction and along the velocity 
gradient direction. Both decrease roughly exponentially. xl /h  = 8.50, x,/h = 0.50, 
x3/h = 0.0. 0, R,,(rl, 0,  0), L, = 1.64 in.; 0, R,,(O, r,, 0), L, = 0.83 in. See equation (4.6). 

our experimental accuracy, even though this has not been established theor- 
etically from the symmetry properties of the correlation tensor in homogeneous 
shear flow. Thus values of the correlations R,,(r,, 0 , O ;  0) and R,,(r,, 0,O; 7) were 
obtained by traversing the downstream wire along r2  for each rl, then extra- 
polating/interpolating to r 2  = 0, assuming R,, even in r2.  Least-squares parabolas 
were used. 

Probe interference effects and inaccuracies in electronic multiplication limited 
the accuracy of the microscales determined from these correlation data, to  an 
estimated k 5 yo maximum. 

The longitudinal and lateral correlation coefficients R,,(r,, 0,O; 0) and 
R,,(O, r2, 0; 0) are compared in figure 13 for xl/h = 8.5. They are nearly similar, 
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in strong contrast to the case of isotropio turbulence, where the latter is observed 
to pass through zero a t  r1.L of order 2, well before the former. 

Figure 14 (a), (b) shows further tests of the lateral homogeneity as indicated by 
correlation functions measured at  five positions along the mean velocity gradient 
direction, all a t  x,/h = 10.5. ‘ r 2  > 0’ and ‘ r 2  < 0’ indicate that the movable 
probe was in a region of velocity higher and lower respectively than that at  the 
fixed probe. There was a 6 yo variation in the microscales and 4 yo in the integral 
scales, and some systematic trends. The less regular variations seem consistent 
with the uncertainty of these measurements. Like the corresponding data of 
Rose, figures 13 and 14(b) show an extended linear range, implying a range of r 
in which Rll(rl, 0 , O ;  0) and R,,(O, r2, 0; 0 )  are well approximated by simple ex- 
ponential functions. 

A 
A A 4 

I I I 

0 1 .o 2.0 3 .O 4.0 
- 0-2 

r (in.) 

FIGURE 15. Spatial correlation functions along r2, the velocity gradient direction, and 
along r,, normal to both gradient and mean velocity directions. In isotropic turbulence 
they would be identical. 0, Rll(r2), zl/h = 10.5, q / h  = 0.50, z3/h = 0.0; A, Rll(r3), 
x1/h = 10.5, z 2 / h  = 0.50, z,/h = 0.0. 

A notable contrast with isotropic turbulence is that lateral correlation taken 
along the velocity gradient direction in shear flow seems to have no significant 
tendency to a negative region. As pointed out by Rose, this is observed in the 
traditional flows as well as in the ‘homogeneous ’ one. Of course, incompressible 
mass conservation requires ‘back flow ’ in terms of a negative transverse correla- 
tion region for R,, somewhere in the (0, r2, r3 )  plane. It shows up in R,,(O, 0, r,; O),  
which has a negative region stronger than that observed in isotropic turbulence; 
figure 15 contrasts the two lateral correlations along r2 and r,. In  a precisely 
homogeneous turbulence, the constant-density continuity equation can be shown 
to require, for example, that 
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FIGURE 16. Check of validity of ‘Taylor approximation’, which equates temporal auto- 
correlation a t  a fixed point in laboratory co-ordinates to spatial two-point Correlation with 
points separated in flow direction. z,/h = 8.5,  xz/h = 0.5, z3/h = 0.0. 0, R,,(O, 0 ,  0;  7 ) ;  

0, Rll(U7, 0 ,  0 ;  0) .  

0 

4 7 msec 
I I I I 

R,, remained negative for the largest r3 separation used (limited by side wall 
boundary layers), especially at  xl /h  = 10.5. It seemed advisable, therefore, to 
use the area under the correlation coefficient curve to the first zero crossing as 
a measure of ‘integral scale’. Presumably this negative region is more a fluid- 
dynamic phenomenon than a network property. This arbitrary scale is called L3. 

A single wire auto-correlation measurement (in time) on the tunnel centreline 
at  xl/h = 8.5 is shown in figure 16. Included for comparison are the Rll(rl ,  0 , O ;  0) 
data, with the transformation 7 = .,ID7. The two functions are nearly equal, 
indicating good agreement with the ‘Taylor approximation ’ (or ‘hypothesis ’) 
identifying the temporal history at a fixed position with convected spatial 
structure, when the turbulence level is small enough [Lin 1953, Uberoi & Corrsin 
1953; for more recent detailed discussion, see Lumley 1965, Comte-Bellot & 
Corrsin (manuscript submitted)]. This is consistent with, for example, the 
boundary-layer observations of Favre, Gaviglio & Dumas (1955). 

102 P. H .  Champagne, V .  G. Harris and X. Corrsin 

This kind of relation was pointed out first by Taylor (1936), with pipe flow as 
the example. 

Since the a.c. coupling in our signal-processing network requires that all 
measured correlation functions have zero integrals, the measured R,,(O, r2, 0; 0) 
would also have shown a negative region at large enough r2. But this would then 
reflect a wosertv of the network rather than of the turbulence. 
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4.3. Taylor‘microscales ’ 
The distribution of longitudinal Taylor ‘ microscale ’ A, along the test-section 
centreline is given in figure 17. Most of these values were obtained from time 
derivatives of the linearized hot-wire signal with the use of Taylor’s approxima- 
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tion (54.2). These values are corrected for noise. As a check, three other kinds of 
measurements were used at  xl/h = 8.5. The energy spectrum method is mentioned 
in the next section. 

The lateral microscales A, and A,infigure 17 were measured from spatial correla- 
tion functions. All increase with increasing distance from the generator, even 
after the turbulent energies and shear have reached nearly constant values. This 
was found also by Rose (1966), and is presumably a natural trait of such flows, 
and an indication of the impossibility of maintaining a stationary, homogeneous 
turbulent shear flow ( 3  5.1). 

Distributions of A, and A, along the mean velocity gradient direction are 
shown in figure 18, with shifted origins. The lowest set of data is A, at xl/h = 10.5 
as determined from R,,(O, r,, 0; 0). The maximum variation is 6 yo. The upper 
three sets are A, as determined from time derivatives at three downstream loca- 
tions. The maximum variation at  xl/h = 10.0 is loyo, excluding the two end 
points, which are in the boundary layers. 

The values of these spatial microscales are consistent with local isotropy, i.e. 
A, * 4 2  A, f 4 2  A,. 

4.4. One-dimensional energy spectra and more on integral scales 

The one-dimensional energy spectra Fl(kl), F,(k,), F3(kl), whose integrals are 2, 
ui, u,2, are presented in figures 19 and 21. Taylor’s approximation in the form 
k, 2nn/gwas used to convert frequency n to wave-number k,, the x1 component. 

Figure 19 gives 2 spectra at x,/h = 8.5 and 10.5. The abscissa is 7k l ,  where 
7 = ( v3 /e ) f ,  the Kolmogorov microscale. The value of dissipation rate E used is that 
given by the energy production rate because energy transport is negligible, and 
the production is measured with greater accuracy than the dissipation. The two 
spectra are not identical, although their integrals (G) are sensibly equal. There 
is relatively less energy in the high wave-number region at xl/h = 10.5. This is 
consistent with the measured downstream growths of both A, and integral scales, 
figure 17. The spectral equivalent of the hot-wire sensing-element length I ,  is 
indicated. No wire length corrections were applied. 

Integral scales of stationary random variables can be inferred from energy 
spectra simply from the Fourier transform connexion between auto-correlation 
and spectrum. For homogeneous turbulence, for example, the u1 integral scale 
in the x, direction is 

- _  

7T 
Ll1 = jr Bll(rl, 0 , O ;  0) dr, = = Fl(0). 

2u; 
(4.5) 

Thus the spectrum measurements contain the chance of another consistency 
check between two kinds of measurements. This check is not entirely explicit, 
however, because instrument limitations (the low-frequency cut-off) persuaded 
us to use as correlation function integral scale measure the integral of R,, only 
as far as its first zero: e.g. 

L, = so”” R,l(rl,o, 0; 0) dr,, (4.6) 

where R,,(,r,, 0,o; 0) = 0. 
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FIGURE 19. One-dimensional energy spectra at two downstream positions. x2/h = 0.50. 0, 
x,/h = 10.50; 0, xl/h = 8.50. 
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FIGUFCE 20. Lateral profiles of integral scales. Uncertainty estimates are indicated on one 
set of points. 0, L,,, x,/h = 10.5, spectra; 0 , L,,, z,/h = 8.5, spectra; 0, L,, xJh = 8.5, 

L, L,, x,ih = 10.5, ~ , , ( r ~ ) ;  0, L,, x,/h = 9.5, B ~ ~ ( T ~ ) .  
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A.c. circuit coupling must give an output for which F,(O) = 0; this is the same 
as the integral of the auto-correlation. However, we measured the turbulence 
spectra without the low-frequency cut-off (figure 5 )  which was employed in the 
correlation circuits. Since the hot-wire set is d.c. coupled, it was possible to 
measure the turbulence spectrum down to rather ‘small frequencies ’ (about 4 Hz), 
then extrapolate to zero frequency to infer Lll. 

10-3 10-1 1 0  10 

3% 

10-4 

FIGURE 21. Comparison between u2 and u3 one-dimensional k ,  spectra, which should be 
equal for isotropy; comparison with corrmponding spectrum computed from measured 
ut spectrum, using isotropic transformation. z,/h = 10.5, x 2 / h  = 0.50, x 3 / h  = 0.0. 0 ,  
F,(k,), u, spectrum; 0, F,(k) ,  u3 spectrum; __ , calculated. 

It must be emphasized that even with d.c. coupling one doesn’t measure down 
literally to zero frequency because the sampling time is not infinite. Furthermore. 
the experiment is not infinite in size; frequencies corresponding to the passage 
of eddies larger than the homogeneous region are of no interest. This latter point 
suggests how we decide that 4 Hz is indeed a ‘small frequency’. From the Taylor 
approximation (which may not be very accurate at such low frequencies) we 
infer that 4 Hz corresponds to a half-wavelength of 5 ft., half the length of the 
test section--and several times its width. 

Figure 17 shows monotonic growth of the integral scales along the test section 
centreline. L, and L, were integrated from correlations as indicated following 
equation (4.6). We note that L, is nearly equal to Lll. 
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Figure 20 shows a small departure from integral scale homogeneity as a 
function of position along x2,  the velocity gradient direction. The departure is 
roughly the same as for the A’s. The scatter in L,, from repeated measurements 
is indicated by vertical lines and is fairly large. 

The lateral scale L, is nearly constant across the flow, excluding x2/h = 0.25, 
where the wall boundary-layer influence begins. The dual values of L, at 
x2/h  = 0-50 were obtained by traversing with r2 > 0 and r2 < 0. The larger value 
in each case corresponds to R,,(O, r2,  0 ;  0) with r 2  > 0. Numerically L,  is about 
one-sixth of the width of the lateral zone which is free of boundary-layer influence. 

Figure 21 is a logarithmic plot of the data points for the 2 and 2 spectra, 
F,(k,) and F3(kl). They are nearly identical for yk, > 5-0 x lo-,, consistent with 
local isotropy. Also shown on this figure is a curve computed from the measured 
2 spectrum using the isotropic relation 

This curve is substantially high at  small wave-numbers (where there is strong 
anisotropy) becaue Fl(kl) is relatively high there compared with isotropic 
turbulence, and the first term in the square bracket is dominant. F,(k,) isrelatively 
higher at  small k, in this shear flow because the entire production of turbulent 
energy is fed into F,(lc,) in this spectral region (Corrsin 1957). 

there is a range of negligible difference, up to perhaps 
yk, = 0.5, consistent with isotropy. The difference which appears at larger yk, 
is most likely a result of the poorer spatial resolution of the X-probe (used to 
measure -F, and E1.J compared with the (smaller) single wire used for Fl. No 
length correction has been applied, although recent calculations by Wyngaard 
(1968) will make the computing of this correction easier. 

-qk)  = F3(W = Wl(W - k ( W P ~ 1 ) l .  (4.7) 

Beyond yk, = 4 x 

4.5. Xhear correlation spectrum 
A one-dimensional shear correlation coefficient spectrum (see, for example, 
Corrsin 1949) can be defined as the correlation coefficient. between a narrow 
frequency band of u1 fluctuation and the same narrow band of u, fluctuation at  
the same point in the flow field : 

where the subscript n indicates a narrow frequency band about a nominal centre 
frequency nHz. The numerator is a function sometimes called the ‘cross spec- 
trum’. With the Taylor approximation, k, = 2rrn/a, the denominator is simply 
the product of the square roots of the two one-dimensional energy spectra. In 
terms of wave-number the correspondence is 

The monotonic decrease to zero of klRIZ with increasing k, would be consistent 
with a tendency toward ‘local isotropy’ (Corrsin 1957) in the sense of Kol- 
mogorov (1941). 

The shear coefficient spectrum measured at xl /h  = 10.5 is shown in figure 22. 
The accuracy at large wave-number is less than that of the one-dimensional 
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spectrum Fl(k1) because nR12 required taking small differences between relatively 
large signals. Each point at  qk, > 0.05 is the average of two measurements. 

We note at once that (i) the value of the shear coefficient spectrum is appreci- 
able over much of the wave-number region where the component spectra exhibit 
consistency with local isotropy (figure 21), and that (ii) there seems to be a 
region of reversed sign at  large wave-numbers. The correlation coefficient values 
in this large wave-number range are very small and therefore of limited accu.racy, 
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but the sign reversal is larger than the scatter in the data. Lacking (for the 
moment, at least) a fluid-dynamic rationalization for this sign reversal, we might 
blame it on a systematic instrument error. Since correlation is a measure of 
phase angle, small differences between the phase shifts of the two channels could 
be the cause. A more likely cause is hot-wire spatial resolution difficulties, re- 
quiring a ‘length correction’. The sensing wire lengths of the X-array were 
0-4 mm, about equal to the Kolmogorov microscale. The gap was about 0.3 mm. 

A check on this spectrum was obtained by computing the Reynolds shear stress 
- .u,U, from it, 

- U i i 2  = Iom P12(kl) dk,. (4.10) 

Since there is only negligible contribution to the integral a t  frequencies lower 
than the lowest experimental value of 5 Hz, no attempt was made to extrapolate 
the zero frequency. The zero-intercept could be obtained in principle from 

lim {FI2(k1)) = - ul(zl, t )  u2(z1 + rl, t )  dr,. 
k + O  
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The average value of -- obtained with different probes and on different 
occasions was (1.84 0.05) x 102cm2/sec2, and the integral of the shear stress 
spectrum curve gives 1.92 x 1Pcm2/sec2, which is a satisfactory check. The 

0-05 is full departure range. The integration was done with the assumption that 
F12 = 0 for yk, 3 0-25, since we tentatively guess that the reversed sign at  larger 
yk, may be due to instrument error. 

c? 
I 1 I I I I 

4.6. Xputiul iso-eorrelution eurves 

Convenient indication of spatial structure is given by the shapes of velocity iso- 
correlation contours. Measurements of R,,(r,, r2, 0; 0)  and R,,(O, r2, r,; 0)  permit 
us to draw iso-correlation contours in the (r l ,  r2) and (r2, r,) planes. These can 

then be contrasted with the shapes appropriate to isotropic turbulence, thus 
identifying effects of constant mean shear on spatial structure. Most of the 
measurements reported here were done with positive values of r,, r2 and r3 be- 
cause of the particular probe-traversing gear used.? A limited number of measure- 
ments of the type Rll( * rl ,  r2, 0; 0) and R,,(r,, & r2, 0; 0) were taken specially to 
examine possible departures from symmetry. 

Figure 23 shows some Rll(rl, r2, 0; 0) data obtained with the fixed hot-wire on 
the test section centreline at  xl/h = 8.50. rl > 0 means that the movable wire 

1- The convention is r E q o v a b l e  probe - X,,,, 
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was downstream. For all values of r2  > 0 (movable probe on the high-velocity 
side-and outside the upstream probe wake), the largest R,, occurs for rl > 0. 
In  isotropic turbulence the largest R,, occurs for rl = 0. 

The extended ( r l z  0) traverse for r z  = 0.100in. displays the phenomenon in 
more detail. A limited number of measurements at X l / h  = 10.4 showed the same 
order of unsymmetry. This kind of unsymmetry was reported in turbulent 
boundary layers by Tritton (1967). 

A lateral symmetry check with Rll(rl, _+ r2, 0; 0) a t  rl = 0.100in. (figure 24 (u); 
data points outside the upstream wire wake) show this to be an even function of 
r2, at least for small r2. Figure 24 ( b )  indicates that R,,(O, r2,  r ,;  0) is also even 
in r2.  

0 

5 0.90 + 
0 

lo\ 
0.70 4 

0 1  
-0.10 -0.05 0 0.05 0.10 

\-, 
I I 

r2 (in.) 

FIGURE 24(a) 

r 2  (in.) 

FIGURE 24(b) 

FIGURE 24 (a). Gradient direction ( f r 2 )  spatial correlation function for a single (small) 
streamwise (rl) separation. This is symmetric within the accuracy of the data for these 
small values of r2. r l  = 0.10 in. 

FIGURE 24 ( b ) .  Gradient direction ( f r z )  spatial correlation fimction for a moderate separa- 
tion normal to both gradient and mean flow ( r3) .  Unsymmetry is detectable at large r2. 
R,,(O, r2,  r,; 0), r, = 0.5 in. 

Spatial iso-correlation contours in the (r,, r2 )  plane are shown in figures 25 (u), 
(b ) ,  (c ) .  The data points for r2 = 0 were found by extrapolation of data over a 
range of r2 outside the wake (appendix). The curves were faired with the results 
of the symmetry tests in mind. For example, they were drawn to intersect the 
rl axis orthogonally because of the symmetry of R,,(r,, r2,  0; 0) in r2 a t  small r2. 
The fairing here, as elsewhere in this paper, was also influenced by the require- 
ment that the collection of curves be a 'family'. 

Figures 26 (a ) ,  ( b )  show the spatial iso-correlation curves in the (r2,  r,) plane 
at  X l / h  = 8.5. Evidently the small r2 symmetry (up and down the gradient) 
is lost at larger r2. The unsymmetry for R,, = 0.3, for example, seems greater 
than might be due to the (inevitable) small departures from homogeneity in the 
field. 

4.7, Space-time correlations 

Since turbulent velocity fields depend strongly on time as well as position, general 
double correlations are functions of both time and space separations. 

These functions include the particularly important data corresponding to 
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correlation functionsin an Eulerian frame translating WiththemeanJEow. Statistical 
properties showing temporal dependence in such a frame are generally interesting. 
But they are of especially simple importance in a steady, rectilinear mean flow, 
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FIGURE 25. SpatiaI iso-correlation contours [Rll(rl, r2, 0; O)] in the (rl, r2) plane. The non- 
zero slopes a t  rl = 0 indicate unsymmetry in rl. 

which has constant mean speed along a mean streamline;? in this class of flows 
the co-ordinate transformation is Galilean, so the frame moving with the mean 
speed is inertial over a finite (i.e. non-zero) time interval. 

t At these low turbulence levels it is not important to distinguish between the 
direction of the mean flow [i.e. tan-l(flZ/Dl)] and the mean of the flow direction 

[tan- ( uz/ Ul, I. 
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Another interesting function contained in the complete space-time correlation 
is, for each space separation, the time difference corresponding to maximum 
correlation. This will be referred to as the ‘optimum time delay’. A complementary 
function is, for each time difference, the spatial separation corresponding to 
maximum Correlation. With the equipment available to us, the former was simpler 
to measure, and is presented below. The Sangamo tape recorder (with G.P.S. 
multipler) was used to obtain much of the data, and a P.A.R. correlator became 
available near the end of this study. Tested with the same signals, the two systems 
gave nearly identical results. 

(4 

-1.00 -06 -02 0 0.2 0.6- 1.00 

r2 (in.) r2 (in.) 

FIGURE 26. Spatial iso-correlation contours [R,,(O, r2, rs ;  O ) ]  in the (r2, rs )  plane. ‘They 
appear symmetric in rz for small rz, unsymmetric for large r2. 

All of the space-time correlations measured were for the u1 field. Measurem.ents 
with lateral separation along the velocity gradient, R,,(O, r2, 0; 7), are shown in 
figure 27. The spatial location nominally assigned to a space-time correlakion 
function is the location of the $xed probe, located on the test section centreline. 
Unlessidentifiedotherwise, alldatawere taken with the fixed probe at  s,/h = 8.50. 

Figure 27 shows distinct unsymmetry in 7, increasing with increasing r2. The 
sign convention on 7 is given by its definition, 

trnovable probe signal - ‘fixed probe signal. 

With the two probe signals recorded simultaneously, T is the delay applied to the 
fixed probe signal during the tape ‘playback’ for correlation measurement. 

We use 7M to designate the ‘optimum time delay’, the value of 7 corresponding 
to a peak in IRI11. In figure 27, with the movable probe in the higher-velocity 
stratum (r2 > 0 ) ,  7M < 0. This means that the maximum correlation occurs when 
the signal from the fixed probe (at the lower velocity position) is played back at  
a larger value of time. This seems plausible because this late-arriving fluid con- 
vected at lower speed was actually closer to the faster-moving fluid when both 
were a bit upstream, and the turbulence structure certainly has a ‘memory’. 

We note also that 1 ~ ~ 1  increases with increasing r2. For r2 = l-OOin., 7M z 
- 0.8 msec, so the fluid particles having maximum correlation were about 0.4 in. 
apart inx,. With a mean speed difference of 0.8 ft./sec, they were at roughlyequal 
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values of x1 about 0.04 see ‘earlier ’ (i.e. about 1.6 ft. upstream of the observation 
plane). For comparison we note that the inverse of the mean strain rate is 

(aU/ax,)-l = 0.08 see. 

Measurements of R,,(O, r2, 0; 7) made at  xl/h = 10.4 (data not shown) yielded 
TA1(r2) equal to the values at 8.5. The values of Rl,(O, r2, 0; 7M) were slightly 

7 (msec) 

FIGURE 27. Space-time correlation functions [R,,(O, r2, 0 ;  7)j vs. time difference 7 for a 
series of gradient direction separations (p2) and zero streamwise separation (rl) and zero r3. 
V ,  r2 = 0.10in.; 0, r2 = 0.25in.; a, r2 = 0.50in.; 0, r2 = 1.00in. 

Space-time correlations with probe separation normal to both mean flow and 
mean velocity gradient, R,,(O, 0, r,; T), figure 28, are symmetric in 7. The fully 
negative cases, r3 = 1.5, 2.0 and 3*0in., are in a range of r3 in which R,,(O, 0, r,; 0) 
has a rather large negative value (figure 15). We note that R,,(O, 0, r 3 ; 7 )  us. 7 
changes shape as r3 is increased. In fact, a local minimum develops at  7 = 0. A 
similar minimum was observed in turbulent pipe flow by Bakewell (1966). 

Figure 29 shows space-time correlations with longitudinal probe separation 
only, R,,(r,, 0 , O ;  7). The shifted peak in this now familiar kind of data (pioneered 
by F a a e ,  Gaviglio & Dumas 1953) is due to the convecting action of the mean 
flow. We can define a ‘correlation convection speed’ VR = r,/rM(rl, 0,O). For this 
simple flow VR = U,, but the effect is more complex in flows with curved velocity 
profiles. Of course, for r2 f 0, V, f U, even in the present flow. 

The dashed curve is the auto-correlation curve of the fixed (upstream) probe 
signal. The envelope of the curves represents the (time) auto-correlation in a 

a F L M  41 
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FIGURE 28. Space-timc correlation functions [R,,(O, 0, r,; 7 ) ]  ws. T for a series of r3 sepam- 
Lions, and rl = r2 = 0. 0, r3 = 0.295 in.; v ,  r3 = 0.50 in.; A, r3 = 0.75 in.; 0, 
r3 = 1.00in.; A ,  v3 = 1.25 in.; 0, r3 = 1.50 in.; 0, r3 = 2.00 in.; 0, r3 = 3.00 in. 

0 

r (msec) 

FIGURE 29. Space-time correlation functions [Rll(rl, 0, 0;  r ) ]  ws. T for a series of r1 separa- 
tions, and r2 = r, = 0. The envelope is auto-correlation function in a convocted frame 
t,ravelling with the mean speed in this z2 layer. D, r1 = 0.10 in.; h . r1 = 0.50 in.; 0, 
y 1 -  - 2.00in.; A ,  rl = 4.00in.; A, r1 = 8.00in.; 0, r1 = 12.00 in.; 0, r1 = 18.00in.; 
v ,  r1 = 24.00 in. ; 1, r1 = 30.00 in. ; - - --, ant,o-correlation. 
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frame moving with the convection velocity. This is the simpIest sort of time 
correlation in the turbulence, but it could not be pursued all the way to the time 
at  which lRlll < 1 because the wind tunnel exit was reached at  rl = 30in. 

Space-time correlations with rl and r2 2 0 are shown in figures 30-34. rl is 
fixed for each figure and each set of points was measured at fixed r2. The short 

r (msec) 

FIGURE 30. Space-time correlation functions [Bll(rl, rz ,  0 ; T ) ]  'us. T for a series of r2 separa- 
tions and rl = 0.10 in. Short vertical lines are at  f. 0, r2 = 0.02 in.; 0, r2 = 0.05 in.; 
h , r2 = 0.10 in. ; D , r2 = 0-25 in.; 0, rz = 0.50 in.; 0,  r2 = 1-00 in.; V, T2 = 1-50 in. 

vertical line drawn under each set of points, in most cases a bit to the right of 
the peak, is the T value equal to the average convection time for the slab of fluid 
bounded by x2 = 0-5h and x2 = 0.5h+r2:  

-7 = r,/ D(r2),  where 0 = U, + -- - . (4.11) 

The difference between -7 and riM is essentially independent of rl. Comparing 

dol r2  
ax2 2 

these figures with figure 27, the rl = 0 case, we find that 

TM(r1, r290) = T M ( 0 ,  y 2 9 0 )  + r l / u >  (4.12) 

which is similar to boundary-layer results of Favre et al. (1955). 
8-2 
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A typical case with appreciable wake interference effect is shown in the 
appendix, for rl = 0.5in. For rl 2 4.0 in., the upstream probe wake could no 
longer be detected. Without wake effect the maximum correlations with optimum 
delay occurred at  r2 = 0. 
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FIGURE 31. Space-time correlation functions [Rll(rl ,  r2 ,  0; 7)] ‘us. 7 for a series of r2 separa- 
tions and r l  = 0.50 in. Short vertical lines are a t  7. 0, r2 = 0.035 in.; A, r2 = 0.10 in.; 
0, r 2 -  - 0.25 in.; 0, r2 = 0.50 in.; 0, r2 = 1.00 in. 

We conclude that, at  any rl ,  [R1l(~M)]max occurs at  r2 = 0 and that the come- 
sponding 7M(r1, 0,O) is equal to r , / a  in that stratum. For these particular ex- 
periments the fixed probe was always at  x2 = 0*5h, where a = U,, so, for r2 := 0, 
rM = r,/U,. We observe furthermore that this ‘convection speed’ of the R,, peak 
for r2 = 0 is independent of rl. 

A ‘ correlation convection speed ’ alternative to V, can be defined by 

where ( r J M  is the rl corresponding to maximum ]Rll(rl, 0,O; T ) ]  at any r .  A few 
tests in the present flow showed V& consistently 2 yo smaller than V,, independent 
of rl or r .  In more general shear flows V, and V& differ more, and are not indepen- 
dent of rl and r respectively. Therefore other concepts of ‘correlation convection 
speed’ have been suggested by Wills (1964) and Favre et al. (1967). The fact that 
V, and V& are nearly equal and that V, is independent of rl in this ‘homogeneous ’ 
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case is consistent with the observation that the Taylor approximation is well 
satisfied. 

Space-time correlations with separation in both rl and r3 (normal to mean flow 
and velocity gradient) are shown in figures 35 and 36. The optimum time delays 
are virtually identical with those for r3 = 0, and hence are equal to rl/Uc. Com- 
pare, for example, ~ ~ ( 2 4 , 0 , 0 - 5 )  in figure 36 with ~ ~ ( 2 4 , 0 , 0 )  in figure 34. The 
slight dependence of TM on r3 is apparently due t o  the slight variation in U 
with x3 (figure 12). 
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FIGURE 32. Space-time correlation functions [Bll(rl, r2, 0; T ) ]  v8.7 for a series of r2 separa- 
tions and rl = 2.00 in. Short vertical lines are a t  ?. 0, r2 = 0.10 in.; D, r2 = 0.25 in.; 
0, r2 = 0.50in.; 0, r2 = 1.00 in.; 'J, r2 = 1.50 in. 

A generous region with R,, < 0 occurs for r3 = 2.00in. just as it does in the 
corresponding spatial correlation R,,(O, 0,  r,; 0). 

Space-time correlations of the type R,,(O, r2, r,; T )  are shown in figure 37. Here 
we might expect to findTM(O, r2,  r3) I ~ ~ ( 0 ,  r2, 0). However, the scatter here pre- 
cludes a meaningful comparison of peak locations with the r2 = 0.5in. curve of 
figure 27. 

With the movable probe at r3 > 0 it was possible to reach negative values of 
r2 ,  which could not be reached when r3 = 0 because of probe support structures. 
Figure 37 shows that Rl,(O, - r2,  r,; 7) $; Rl,(O, r2, r,; T ) .  This slight unsymmetry 
is qualitatively consistent with that indicated along the r3 = 0 axis in figure 26 (b).  
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FIGURE 33. Space-time correlation functions [Bll(rl, r2, 0;  T ) ]  v8.7 for a series of r z  sppara- 
tions and r1 = 12.0 in. Short vertical lines are a t  ?. 0, rz  = 0.0 in.; [=I, rp = 0.50 in.; 
A ,  r2  = 1.00 in.; v ,  r2  = 1.50in. 
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FIGURE 34. Space-time correlation functions [&(rl, r2, O;T)] vs .7  for a series of r2  separa- 
tions and rl = 24.0 in. Short vertical lines are a t  f .  0, r ,  = 0.0 in.; 0, rl  = 0.50 in.; 
A, rp  = 1-00in.; V ,  r2 = 2.00in. 
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FIGURE 35. Space-time correlation functions [Rll(rl, 0, r 3 ;  7 ) ]  ws. 7 for two different r3 
values, r 2  = 0 and small rl ( =  0.50 in.). 0, r3 = 0.50 in.; 0,  r3 = 2-00 in. 

FIGURE 36. Space-time correlation functions [Rll(rl, 0, r 3 ;  T ) ]  ws. T for two different r j  
values, r2 = 0 and largo rl ( = 24.0 in.). 0, r3 = 0.50 in.; 0, r3 = 2.00 in. 

-0.10 

0.6 

0.5 

0.4 

A 

t- 0.3 
h" 
... 

h" 0.2 < 
d 0.1 

0 

-0.1 

- 0.2 
-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0 2.0 4.0 6.0 8.0 10.0 12.0 

T (msec) 

- O 0 0 0 8  0 

I I I I  

FIGVRE 37. Space-time correlation functions [Rl,(O, r2,  r,; 7) ]  ws. 7 for a series of r3 values, 
with some opposite r2 values and r1 = 0. The slight unsymmetry in r2 for r, = 0.5 is con- 
sistent at  T = 0 with figure 26(b ) .  n, rz  = 0.5 in.; r3 = 0-5 in.; 0, r2 = - 0.5 in., 
r s -  - 0.5in.; v, r .  2 -  - 0.5in., r 3 =  1.Oin.; A, r2=0.5in. ,  r3 = 2.0in.; 0,  r2=-0.5in. ,  
r3 = 2.0in. 
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4.8. Space-time correlation in a convected frame 

The basic Eulerian frame in which to examine the turbulence field evolution 
is one travelling with the fluid in the mean. Such a concept is simple only for 
homogeneous fields. I n  more general turbulent shear flows the curvature ofthe 
mean velocity profile destroys the resulting simple antisymmetry of mean con- 
vection and distortion effects in layers equidistant 'above' and ' below' any 
reference lamina. 

?+---- Xl 
----- 

I- r, --+ 

L I 
I -  

FIGURE 38. The transformation from laboratory co-ordinates (top) to convected co- 
ordinates travelling with the mean speed of the fluid layer bounded by the x2 positions of 
the probes. 

I n  the homogeneous case, for example, the space-time correlation peak with 
r2 = r3 = 0 travels simply with the local mean flow, so it is fixed at  the origin 
of a correspondingly convected frame. This is not true in a (necessarily in- 
homogeneous) case with curved velocity profile (e.g. Favre et al. 1955; Baldwin & 
Mickelsen 1962; Fisher & Davies 1964), so these flows may be more fruitfully 
studied in frames translating with the space-time correlation maxima, i.e. for 
optimum delay T~ (Favre et al. 1967). 

In  flows with strong downstream inhomogeneity, such as a jet entering fluid 
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FIGURE 39. Typical space-time correlation functions ri, 0; 'i)] in the frame travelling 
with the 'local' mean speed of the flow (figure 38). r6 = rZ ,  7" is defined in equation (4.11). 
r;  = 0.50 in. 0, r; = 0.0 in.; v, r; = 0.5 in.; 0, ri = 1.0 in. 
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4.9. Xpace-time iso-correlation curves with optimum delay 

For each pair of hot-wire probe positions, there is a particular 'optimum time 
delay' rM which gives an extreme value (usually a maximum) of the two-point 
Eulerian velocity correlation coefficient function. Fame et al. (1955) have 
measured for a boundary layer the shape of the spatial correlation function 
defined by selecting r = rM for each spatial separation, e.g. 

Bi?)(rl, r2 ,  r3)  ?S B1l(rl, r 2 ,  r3;  r M ) .  (4.13) 

Figure 40 shows the dependence of B$y)(rl, r2, 0) on r2for a small fixed value of 
r1 in the present flow. For small r2 a t  least, these functions were found to be even 
in r2. 

Figure 41 gives some of the data measured on Riy)(rl, r2, 0 )  to look for possible 
symmetry in rl for fixed r2. These functions are not even in rl. It is especially 
notable that, except for r2 = 0 (the envelope of figure 29), has its maximum 
at r1 > 0. This is qualitatively like the r = 0 case, figure 23. This behaviour is 
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at  rest, both kinds of (accelerating) convected frames may be appreciably non- 
inertial. 

Although our data lend themselves more easily to presentation in terms of 
T~ (next sections), we have extracted from tbe data of the previous section some 
typical space-time correlations evaluated in a frame travelling at  a speed equal 
to 0, theaverageofthespeedsinthe twolaminae ofthehot-wireprobes (figure 38). 
Figure 39 shows that these results resemble figure 41, as we expect in view of 
equation (4.12). 
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reflected in the shapes of the iso-correlation contours, Riyl = constant. In iso- 
tropic turbulence the maxima all occur a t  r l  = 0. 

Typical iso-correlation contours in the ( r l ,  r2 )  plane are skehhed in figure 42. 
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These resemble their T = 0 counterparts, figures 25(a) ,  (b ) ,  (c) ,  although the rl 
extension is greater here. 

Figure 43 shows that RiY)(O, r2,  r 3 )  is roughly an even function of rz.  We have 
insufficient data to permit sketching space-timeiso-correlation curvesin this case. 
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5. Analysis of experimental results 
5.1. Homogeneity; stationarity in a moving frame 

In 3 2.2 we reached a tentative conclusion that (spatially) homogeneous turbulent 
shear flow at very large Reynolds number may not be stationary (in time). We 
hope that the downstream part (8.5 < xl/h 6 10.5) of our wind tunnel is a viable 
approximation to homogeneous shear flow. It is of course stationary in the 
laboratory frame simply because the fan runs steadily, but the time evolution 
of the turbulence structure is best examined in a frame convected uniform1,y at 
a speed equal to the average speed in the fluid slab under study. The spatial 
inhomogeneity necessarily leads to non-stationarity in any uniformly Convected 
frame, and we shall estimate the departure from stationarity in, say, a frame 
convected at  U,, the mean centreline speed. 

We begin by computing the departures from homogeneity. At the end we shall 
ask whether the field has reached an asymptotic s ta tea lbe i t  a non-uniform one. 
Necessary criteria for homogeneity are that the mean flow and turbulence 
statistical properties vary by only relative small amounts over distances as large 
as the largest characteristic lengths in the turbulence : 

fh/N)IVNl Q 1, (5.1) 

where N is a mean property, V is the gradient operator and A is ideally the greatest 
distance over which correlations are measurable. In  place of A we use integral 
scales of the velocity field. 

The data in figures 7 and 10 and the computations in 3 4.1 indicate that the 
mean strain rate dgl/dx, and the second moments of the turbulent velocity com- 
ponents are relatively free of large-scale trend inhomogeneities, so we focus our 
attention on the scales h and L, figures 17, 18 and 20. The following are average 
trend departures from homogeneity in the working volume, 8.5 6 zl/h < 10.5: 

These magnitudes seem to indicate a good approximation to homogeneity. 
A different length characterizing the large structure in a shear flow is a 

measure of the shear stress eddy size, such as the inverse of the first moment of 
the shear spectrum (Corrsin 1957), 

(5 .3 )  

In the boundary layer this is equal to about half the width of the fully turbulent 
zone, which is itself quite inhomogeneous by other criteria. In  contrast, 
in the present flow is only one-fifth the width of the homogeneous region. This 
shows that we have succeeded in generating a flow in which the momentum 
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transfer eddy structure is not only appreciably smaller than the width of the 
fully turbulent region but is also appreciably smaller than the laterally homo- 
geneous region. 

Next we examine the departure from stationarity in a frame convected with 
the centreline speed, Uc. Again the worst offenders seem to be the scales. For a 
quasi-stationary state, they would have to change by only small fractions during 
an integral time scale T in the convected frame : 

Since the two-time velocity correlation coefficient in the convected frame (the 
envelope in figure 29) has not dropped near zero by the end of our test section, 
we cannot calculate its integral, T.  We can, however, make a very crude estimate. 
Measurements in grid-generated isotropic turbulence (Comte-Bellot & Corrsin, 
manuscript submitted) have found T M LJu;. In a sense this T reflects the per- 
sistence of the turbulent structure when it is destroyed only by self-scrambling. 
The shear flow has an additional mechanism destroying its structure, viz. the 
mean straining, whose characteristic time is the inverse of the strain rate 
dUJdx,. Assuming that these mechanisms act more or less independently in 
reducing correlation, we estimate T by 

- 1 % u’ ”+-. dU, 
T L, dx, 

We then find that 

so stationarity in the convected frame is only fair. It would be useful to measure 
the triple correlation of velocity, to see how well the first of these numbers checks 
with the value of dhldt estimated by equation (2.13). 

The levelling off of the velocity moments (figure 7) is the strongest indication 
that the field has reached an asymptotic state, even though this state is not 
stationary in the &-convected frame. The monotonic growth of scales (figure 17) 
gives the clearest measure of continuing evolution. In  the presence of a constant 
mean velocity gradient, the growing integral scales might be expected to lead 
to growth in the turbulent energy production rate, thus to a growth in turbulent 
energy. These events are not indicated in figure 7 ,  but should be sought in future 
experiments at larger dimensionless times. 

It is interesting to tabulate some of the characteristic times in this experiment. 
Unless otherwise identified, the turbulence times in the following list are averages 
for the working volume, 8.5 < x,/h < 10.5. 

Transit time for generator (test-section residence time) : 

test-section length 9.5 ft. 
= 0.23sec. - T, = - 

mean speed 40.7 ft./sec 
Mean straining time: 

T - (%)-’ = 0.077sec. 
- ax, 
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Eulerian time scale in convected co-ordinates: 

Energy spectral residence time: 
- q*k e T -  = - = 0.22sec. 

- - ~ ( d V 1 / d x , )  € 

Root-mean-square turbulent straining time : 

T, = - = 0-008sec. (3” 
In order to have an asymptotic state in the wind tunnel we presumably need 

TT appreciably larger than the other characteristic times listed. This condition 
is not met for TE but, as remarked earlier, the levelling off of velocity moments 
suggests that an asymptotic state has just about been reached. Perhaps TT 2 TE 
suffices. 

Unfortunately the test section was not long enough to attain 

&(UC~, 0, 0;7) < 1. 

In future work we hope to reach this region by means of larger velocity gradient 
and/or longer wind tunnel. 

5.2. Local isotropy 

As mentioned earlier, the relative values of the Taylor ‘microsedes’ are con- 
sistent with local isotropy. The turbulence Reynolds number at xl/h = 10.0 is 

This is probably not large enough to permit local isotropy in the inertial range of 
the spectrum; the dissipative region may not be remote enough from the pro- 
duction region (e.g. Corrsin 1957, 1958). 

The expectation of local isotropy is based on the idea that the non-linear 
spectral energy cascade is an orientation-losing process, primarily through the 
cross-spectrum of pressure-velocity covariance. If an inertial subrange does exist, 
a necessary condition for local isotropy in the inertial region is that the Onsager 

a measure of gross straining time. The Q factor is a matter of taste. k is wave- 
number magnitude, d is three-dimensional spectrum, a concept useful primarily 
in isotropic turbulence. The gross strain presumably tends to cause anisotropy 
in all sizes of eddies. If we approximate d ( k )  by the Kolmogorov isotropic form 
(5.8) becomes 

with e the viscous dissipation rate. 
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At xl/h = 10, e M 2 x 103cm2/sec3 (see below), so (5.9) gives kp 9 0.5cm4, 
which might be written as k 9 0.4 cm-I. A t  this location the Kolmogorov wave- 
number k ,  s (e/v3)f x 28cm-l. We infer that local isotropy is not likely to be 
attained a t  a wave-number much smaller than kE in this flow. If local isotropy is 
attained, it is likely to be in the viscous (large wave-number) range. Viscous 
dissipation becomes important for wave-numbers greater than 0.2 E,. There 
exists a mixed spectral region, roughly O.2kK < k < k,, where both inertial 
transfer and viscous dissipation are important. It is in this range that most of 
the dissipation occurs. 

In  this mixed range the characteristic spectral times (such as T,,) are mostly 
the same order as the inverse r.m.s. strain rate or vorticity, (Y/S)~, so (5.8) is 
equivalent to 

(5.10) 

At xl/h = 10-0, (e/v)B/(dv,/dx,) isapproximately 10, which at best satisfies (5.10) 
marginally. 

Another requirement for local isotropy is that the spectral region be at wave- 
numbers much larger than those a t  which turbulent energy production occurs. 
The latter was conjectured by Corrsin (1958) to be 

1 aV1 kp  % - - - .  
u; ax, 

(5.11) 

Then we should not expect local isotropy a t  wave-numbers which do not satisfy 

1 av, k9---. 
u; ax, 

(5.12) 

For dissipation local isotropy this requires a t  least that k, 9 kp. 
At xl/h = 10.0, k,lkp M 35, which seems sufficient. 
A more rational measure of the wave-number region for turbulent energy 

production is simply (k,),,, the first moment of the production spectrum-which 
is just the shear spectrum [equation (5.3)]. At xl/h = 10.5, (k1)12 = 0.4cm-l, the 
same order as kp .  

It should be remarked that this discussion and computation in terms of F',(k1), 
the one-dimensional spectrum of -=, is less appropriate than work based 
on the full three-dimensional spectral density field. The more complete function 
will presumably be measured in turbulent shear flows when time permits it. 

The turbulent energy dissipation rate is most accurately determined in this 
experiment by measuring the production rate and remembering that, since the 
energy in the convected frame is essentially constant and since spatial transfer 
of energy is negligible, therefore dissipation equals production : 

e e= - dU,/dx, = 2-35 x 103 cm2/sec3. (5.13) 

To the extent that the dissipation occurs primarily in a locally isotropic part of 
the spectrum, we can also determine e from any one of the mean square velocity 
derivatives. The values of A, ( 9  4.3) were mostly measured by time differentiation 



128 3'. H .  Champagne, V .  G. Harris and X. Corrsin 

and invocation of the Taylor approximation in the form a/at + - gl a/axl to get 
( a ~ ~ / a x , ) ~ .  I n  these terms the dissipation is 

E 1 5 ~ ( ~ u , / ~ x , ) ~  = 1.93 x lo3 cm2/sec2, (5.14) 

presumably a less reliable value than (5.13). 
The fully isotropic formulas for E ,  involving _ _  mean square velocity components, 

are likely to be even less accurate, because u:, ui and .," are set primarily outside 
of the locally isotropic part of the spectrum. 

A direct measure of departure from local isotropy in the spectral range which 
determines the first derivatives (hence the dissipation) is the estimated correl a t' ion 
between aul/ax, and au,/ax, ( 3  5.5) : 

(!3.15) 

For isotropy this is zero. 
Although the three one-dimensional spectra have relative forms nearly con- 

sistent with an inertial, locally isotropic subrange 0.03 < qk, < 0.15, the shear 
correlation coefficient spectrum (figure 22) indicates that this region is sig- 
nificantly non-isotropic: klR12 varies between 0.4 and 0.05. L,R12 is, however, very 
small in the viscous region. 

Bradshaw (1967) has noted for other flows the presence of spectral forms con- 
sistent with local isotropy in a wave-number range where ,e,R12 is appreciable. 
He suggested that (k,R121 < 1 is too strong a condition (perhaps sufficient, but 
not necessary), and he proposed the weaker one, 

(5.16) 

I n  the present flow Bradshaw's relation is satisfied for qk, > 0.03. On the other 
hand, we believe the spectrum to be appreciably non-isotropic a t  larger k, 
[particularly in view of (5.15)]. Furthermore, there is no reason to believe that 
turbulence which is isotropic around wave-number kf would be non-isotropic a t  
k, > k:. Therefore we conclude that the Kolmogorov ' - Q law ', even with proper 
component spectral magnitudes, is a relatively insensitive indicator of local 
isotropy. 

5.3. The Reynolds stress tensor 

One of the main reasons that the stress/strain-rate relation for turbulent shear 
flows cannot be Newtonian is that the stress tensor gik = - qk and the strain- 
rate tensor El, z aq/ax, + agm/ax, are not generally aligned (Corrsin 1957). 

In  this rectilinear flow the strain-rate principal axes are a t  angles aE = f 45", 
while the vik principal axes are a t  

a, = & tan-1 -- = - 28", 62". (5.17) 

Thisrelative orientation is much like that found in boundary-layer and channel 

(:zJ 
flows (away from the symmetry axis), where 

a&+ +45", 

a., z - 20" to - 25", 70" to  65", 
(5.18) 
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and is quite different from that in the plane wake (away from the symmetry 
axis), where 

a, + & 45"' 

CI, w 40" to 50"' - 50" to - 40". 
(5.19) 

As remarked earlier (Corrsin 1957), the rough equality in the wake may be 
related to  the empirical fact that such 'free' shear flows can be approximated 
with gradient transport (quasi-Newtonian) models, even though such models 
are wrong in principle. 

The two principal stressses in the (x l ,  x2)  plane are 

(5.20) 

and the ratio in the present flow is 

CTa/gb = 2.3. (5.21) 

For comparison, the ranges of values in three traditional flows are 

i boundary layer: ga/crb = 3 to 4, 
channel : 

plane wake: ga/g,, = 2 to 6. 

CTa/cTb = 3 to 5, (5.22) 

If we insist on computing an 'eddy viscosity', vT = -7@J(dgl/dx2),  we find 
vT = 13.2 cm2/sec, so vT/v = 91. For comparison, vT/V = 200 in the boundary 
Iayer at x2/6 = 0.5 (Klebanoff 1955). 

A further comparison between the present flow and traditional ones is given 
by the ratios of turbulent to mean flow strain rates: 

Flow 
(y/% 

Position, xz/8 

Boundary layer 0.1 2.5 

0.9 5.5 

0.5 7.6 
0.9 16 

(Klebanoff 1955) 0.5 9.3 

Channel (Laufer 1951) 0.1 5.3 

'Homogeneous ' shear (xJh = lo), any z2 9.8 

In  this table, 6 is boundary-layer thickness and half-width of the channel. The 
value of ( s / v ) ~ / ( d ~ l / d x 2 )  in the boundary layer at x2/6 = 0.9 becomes 27 if we 
divide by the local 'intermittenoy factor', the fraction of time that the hot-wire 
probe was in turbulent fluid. 

5.4. A pressure-velocity covariance tensor 

In  Q 2 we are reminded that the one-point covariances p au,/ax,, p au2/ax2 and 
p au,/ax, are intercomponent transfer rates of turbulent kinetic energy. A related 
term, p(au,/ax, + au2/axl), acts on the turbulent shear stress. Turbulent shear 
flows with nearly parallel mean streamlines (boundary layers, channels, wakes, 

~ _ _ _  

9 F L M  41 
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jet cores, etc.) receive their turbulent energies almost entirely in the streamwise 
velocity component, yet the three component energies are observed to be the 
same order. It follows that the intercomponent transfer is a key phenomenon. 
Since the turbulent shear governs the mean momentum distribution, the pressure- 
velocity covariance which helps to set the shear stress level by balancing against 
the shear production rate must also be central to turbulent flow dynamics. 

The difficulties of making reliable measurements of static pressure fluctuations 
(except on smooth walls) have caused the gathering of such data to lag far behind 
the measurement of velocity moments by hot-wire anemometer. This nearly 
homogeneous shear flow opens a side door to pressure-velocity covariance 
determination by simplifying the moment equations. Rotta (1962) first suggested 
this approach in connexion with traditional shear flows. In the present flow the 
component energy and shear stress equations (2.6) and (2.7) reduce roughly to 

- ~ 

-au, 1 au, 8 
0 rz -u1u2-+-p---, 

ax, p ax, 3 
(5.23) 

1 au, e 
0 M +-p- ax, 3’ 

(6.24) 

1 au3 € 
0 M +-p-- - ,  

P 8x3 3 
(5.25) 

(5.26) 

These equations also assume local isotropy in the dissipative spectral range, a 
condition only roughly met in this experiment, but one which could be improved 
by increasing Rh. 

We see that all terms but the pressure-velocity covariances have been directly 
measured by hot-wire anemometer. The equations then give us the required 
covariances. The only other flows in which these terms have been determined are 
unsheared, nearly homogeneous, non-isotropic turbulence generated by a uniform 
grid followed by gross strain (e.g. Uberoi 1957). 

Expressed compactly in terms of e, equations (5.23, 24, 25) give energy loss 
rate from ul shared equally by;; and z: - 

(5.27) 

This equality of transfer rates into 2 and 2 is due merely to the assumption of 
local isotropy. We do not expect exact equality because u2 is directed along the 
only important mean gradient in the field, dUJdx,, while u, is normal to it. 
Furthermore, we note from figure 10 that 2 + 2. As in boundary layers and 
channels, 2 > Gg in this ‘homogeneous’ case. 

Adramatic difference betweenp au,jax, andp au,jax, turnsupin the correla,tion- 
discard calculations by Deissler (1961) and Fox (1964). They have computed 
some of the properties of a suddenly sheared isotropic turbulence, discarding 
triple velocity covariances but keeping pressure-velocity covariances. Their 
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calculations give a healthy transfer from 2 to 3, but lack adequate transfer 
to 3, so that component dies out an order of magnitude more rapidly than the 
others. Their computations are interesting because they reveal (presumably 
over-emphasize) possible differences between p au2/ax, and p au,/ax, at small 
Reynolds numbers. Alternatively, it is possible that their truncation is not self- 
consistent. 

As hypothesis for the intercomponent transfer rates Rotta (1951, 1962) pro- 
posed a linear dependence on component energy deficiency (relative to the 
average), in effect 

(5.28) 

From the data of figure 10, the three Rotta relations give C = 1.5, 1.2, 2.0. If 
Rotta's conjecture were exact, these would be equal. We conclude that it is a 
plausible first step for shear flow. He concluded from calculations on the data of 
Uberoi (1957) that it works within a factor of 2 for irrotationally strained iso- 
tropic turbulence. 

The analysis of the pressure-velocity covariance terms can be taken further 
if we note that they are components of a second-rank symmetric tensor, 

(5.29) 

the pressure/strain-rate covariance, which actually appears in the balance equa- 
tion for (Chou 1945). For the present flow, the above equations plus the 
replacement of dissipation by production permit the approximation 

- 

(5.30) 

0 0 

The principal-axis directions in the (xl ,  x2) plane are given by 

(5.31) 

With the measured moments, these are 

ap E -28", 62", (5.32) 

which is equal to the orientation of the Reynolds stress tensor, within the accuracy 
of the measurements. The corresponding principal values are 

dol 1~ ~ 

Pa, b = ~ (5UIU2 T [(u1uJ2 + ( i q 2 1 - 4 ) .  (5.33) 
dx2 

9-2 
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Like the stress tensor, qk has its third principal axis along x3, and the corre- 
sponding value is 

(5.34) 

- 
The corresponding principal value of gik is gc = - u:. 

An important consequence of the alignment of gik and e,,, is that inspection 
of the shear flow in the common principal-axis co-ordinates presents a view very 
much like the irrotational homogeneous strain problem, in which both gi,; and 
Fi3n are diagonalized. Townsend (1956) proposed the first theory for inferring 
shear stress in a shear flow from the level of anisotropy in unsheared turbulence 
subjected to homogeneous irrotational strain. 

We can now test Rotta’s linear intercomponent energy transfer, equation 
(5 .28) ,  for the present flow in principal-axis co-ordinates. In  cm2/sec2 units the 
principal values of the Reynolds stress tensor (now only kinetic energies) are 
u: = 600, 3 = 155, u: = 292. The corresponding values of intercomponent 
energy transfer rate are 

- - 

1 - p  = -  
P6 a 

1.02, 
1 
- P, = 0.33. 
Pe 

The (hopefully) common proportionality factor of the equation analogous to 
(5.28) has the three values C‘ = 1.4, 1.3, 2.0. The third number is of course the 
same in both co-ordinate systems. 

Rotta proposed an equation like (5 .28) ’  and using the same empirical constant, 
for estimating the pressure-velocity covariance term in the shear stress equation 
(5.26). Evidently he visualized rotating the principal-axis energy estimates back 
into ‘laboratory co-ordinates’. His P12 suggestion can be combinedwith (5 .28) ,  by 
writing 

(5.35) 

where Igik = $2 Si,,., the form of uik in isotropic turbulence with the same energy. 
Sik is the Rronecker delta, equal to 1 for i = k ,  0 for i + k .  

This form emphasizes Rotta’s implicit assumption of the coincidence of the 
principal axes of Pik and ujt, a condition which does not follow in general frorn the 
second moment equations-and which may not be true for all flows. We have 
found experimentally that it holds in our nearly homogeneous shear flow, so 
in this flow Rotta’s proportionality hypothesis is not ruled out a, priori. It seems 
plausible that the principal axes of Pix- and ujl be approximately the same in 
boundary layers and channels which have no major downstream evolution due 
to mean pressure gradients. 

5.5 .  Spatial iso-correlation curves 

In isotropic turbulence spatial iso-correlation curves Rll(rl, r2,  0; 0) = coast. are 
ovals, symmetric about rl and r2 axes. Figure 25 shows that turbulence under- 
going iiearly homogeneous shear straining departs systematically from sym- 
metry, at least in the rl direction. Unfortunately our data are confined to one 
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quadrant, but a comparison with isotropic turbulence data [figure 44, data 
adapted from Comte-Bellot & Corrsin (manuscript submitted)] emphasizes a 
characteristic difference especially near the r2 axis, where the shear case does not 
intersect normally. The principal axis of the mean strain-rate tensor in this 
quadrant is at 45' to the rl axis; that of the Reynolds stress tensor is 62'. It may 
be significant that forms of the shear case iso-correlation curves cannot be 
simulated by simply tilting the isotropic ones. 

FIGURE 44. Contrast between typical spatial iso-correlation contours [RlI(yl, r2 ,  0; O ) ]  in the 
shear flow and in nearly isotropic turbulence generated by a grid. The shapes (rather than 
the average radii) are the relevant information. -,nearly homogeneous shear turbulence ; 
- - -  , nearly isotropic grid turbulence. 

A truncated power series approximation to R,, helps to extract additional 
quantitative information. If u,(x + r, t )  is expressed as a power series in r, and r2,  
with r3 = 0, the series for R,, to fifth order in r ,  assuming homogeneity, is 

(5.36) 



134 

The slopes a t  rl = 0 and r2 = 0 are 
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The eight derivative moments in (5.36) were determined from the correlation 
data. The values, in the order in which they occur in (5.36), are 1 . 0 ~  lo3, 
- 2.9 x 102, 1.9 x lo3, 1.9 x lo5, - 1.7 x lo5, 1.1 x lo6, - 5.3 x lo3, 2.5 x lo5. The 
units are inches and seconds. 

Putting R,, = constant in (5.36), we get equations for the iso-correlation con- 
tours a t  small r .  These can be used to infer particular properties, such as the 
slopes a t  the axis intersections: 

(5.39) 

(5.40) 

With the moments estimated from the measured correlation functions, these 
two expressions were used as aids in fairing curves through the scattered data 
of figure 25.  I n  the case of (5.40), we don’t even need the numerical values listed 
above: the denominator of (5.40) is proportional to the first two terms in (5.38), 
and figure 24 suggests that (aR,,/ar2)1,2=o = 0, so we conclude that the iso- 
correlation contours a t  small r intersect the T ,  axis normally. This is consistent 
with the tabulated moment values for rl < 0.18in. 

Thenumerator of (5.39)isproportional to the first two termsin (5.37). Figure 23 
shows that (aRll/a~l)~rl~o > 0, so (dr2/drl)l,l=o > Oif the denominator 3 0, a con- 
dition which is met for rl < 0.21 in., a t  least. 

For both sets of axis intersections, the small r behaviour seemed consistent 
with the large r data as well. 

5.6. Space-time iso-correlation curves with optimum delay 

As discussed in $4.2, space-time correlation in a frame convected with 0, the 
average speed of the r2  slab of fluid bounded by the probes, would be desirable. 
Since we have insufficient data to extract iso-correlation contours in that frame, 
we have inferred results which are easier to get and nearly the same in this flow, 
viz. the iso-correlation contours with r = rM, figure 42. 

Another reason for inspecting these functions is that Favre, Gaviglio & Dumas 
have studied them extensively in the boundary layer. They have established a 
characteristic ‘kidney shape’ (figure 40 of Favre, Gaviglio & Dumas 1955; 
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figures 7, 8 of Fame, Gaviglio & Dumas 1958)) and we can ask if this is due 
simply to the shear or if it is due to the transverse inhomogeneity. 

Although our data are restricted to one quadrant, this is sufficient to show that 
the homogeneous shear flow does not have its maximum maximorum in the 
( r l ,  r 2 )  plane on a line which is concave toward the high-velocity side. It appears 
to be on the rl axis instead. A second difference is that the present flow shows 
distinct upstream-downstream unsymmetry (e.g. by (dr2/drl)  lr,=,, + 0 for the 
RiY) = constant contours), while the boundary-layer contours are virtually sym- 
metric about the r2 axis. 

As in the pure spatial case, some symmetry properties for small r and T can 
be inferred by Taylor series expansion of u , ( x + r , t + ~ )  about (x, t ) .  If we 
assume both stationarity and homogeneity, and truncate the expansions at  the 
quadratic terms ( N r’$ r:, r1r2, r lT,  r2T, T ~ ) ,  hence [l- Riy)] -g 1, theiso-correlation 
ellipses, r2(rl ;  T ) ,  are tilted. This is consistent with the contours drawn in figure 42 
except near the rl axis. Our decision to sketch the contours normal to the rl axis 
was governed partly by the trends in data for additional RlY’ values (omitted 
here for brevity) and by the good approximation to r2 symmetry displayed in 
RiY)(0,r2,r3) (figure 43). Of course none of these data corresponds to signal 
separations small enough for the Taylor series analysis to be surely applicable. 
There is a clear need for more extensive data, including all four quadrants in 
the ( r l ,  r 2 )  plane. 
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the U.S. Air Force Office of Scientific Research, with help from the Boeing 
Scientific Research Laboratories. During the past year it has been supported 
by the U.S. Atomic Energy Commission. We should like to thank H e r d  Buthaud 
for his help in recording and processing data, and a referee for his critical reading 
of the manuscript. 

Appendix. Probe interference study 
A hot-wire probe inevitably changes the flow field around it, especially on the 

downwind side. This probe wake consists of extraneous alterations not only in 
mean and turbulent velocity fields, but in temperatures as well. When we seek 
correlation data at  two space points such that the downstream probe may be in 
the wake of the upstream one, we must either make suitable corrections to the 
measurements or avoid the wake and infer the corresponding data by inter- 
polation/extrapolation. We chose the latter course. Favre, Gaviglio & Dumas 
(1955) indicate a wake effect on correlation for their ‘old probe ’, remarking that 
improved streamlining reduced this effect. 

Figure 45 shows the two-probe configuration. For small rl it is the wake of the 
upstream wire itself which must be avoided; at  larger rl the needle and full probe 
wakes were involved. For rl 2 4.0in., no wake effect could be detected when the 
downstream probe was at  r2  2 0, so no extrapolation was necessary. 

It should be mentioned parenthetically that figure 45 does not apply to the 
measurements of R,,(O, 0, r,; T ) ,  for which the wires were set parallel to x2. 
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Top view 
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Side view 
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FIGURE 45. Sketch of hot-wire probe configuration. 
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FIGURE 4G. Mean velocity and fluctuation profiles close behind upstream hot-wire. 
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The influence of the upstream probe on the reading of the downstream probe 
is shown qualitatively in figure 46. The small inserted plots show values of mean 
and fluctuating linearizer output voltages, 2 and er.m.s. respectively, at  various 
rl stations, functions of r2. The subscript 00 denotes conditions outside the wake. 

0.70 
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0.50 c 
0.00 5 

0.0 0.1 0-2 0-3 0.4 
r2 (in.) 

5 

FIGURE 47. Example of least-squares extrapolation technique to  avoid wake interference 
error. rl = 0.5 in. 0, measured; - , estimated. 
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FIGURE 48. Illustration of error in space-time correlation function [Rll(rl, T2,  0; T)] when 
downstream wire is in wake of upstream wire (r2 < 0.035 in.). The peaks should increase 
monotonically with decreasing r2 .  r1 = 0.50 in. 0, re = 0.0 in.; A, r2 = 0.010 in.; a, 
r2 = 0.035 in.; A, r2 = 0.10in.; D, r2 = 0.25in.; 0, r2  = 0.50in.; n, r2 = 1.000in. 
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No attempt has been made to differentiate between velocity and temperature 
responses. The r.m.s. fluctuating voltage exhibits a double-lobed character for 
small r l .  At larger r1 the double lobes blend into a single, off-axis curve. 

Figure 47 (circle data points) shows the behaviour of the recorded correlation 
coefficient Rll(rl, r2,  0; 0) as one traverses in the r2 direction at  rl = 0-5 in. At the 
point r2 = 0 the apparent correlation coefficient is 20 yo below the value obtained 
at  r2 = 0-05in. Presumably it should have a maximum at r2 = 0. 

To estimate Rll(rl, 0 , O ;  0) we extrapolate the correlation data in the small r2 
region using only data judged to have been taken outside the wake. Further- 
more, we use the earlier inference that Rll(rl, r2, 0;  0) is symmetric in r2, therefore 
we extrapolate with a least squares parabola with vertex at  r2  = 0. The diamond 
points identify the parabola in figure 47. For very small rl, extrapolation was 
done simply by inspection. 

The correlation in the wake drops off with increasing rl more rapidly than that 
in the basic flow because the narrowness of the mean shear zone around the wire 
and in its near wake reduces the scale of the turbulence produced. This also 
causes important errors in the space-time correlation, as illustrated in figure 48. 
Not only does the correlation level drop off more rapidly in time (smaller scale 
with increased r.m.s. velocity implies smaller characteristic times), but also the 
peak arrival time is shifted. Although the 6 yo error in TM may seem fairly small, 
it is conceptually very serious because it actually reverses the sign of rM - r,/o. 
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